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1 The Simple Linear Regression Model with Normal Residuals

In previous class sessions, we saw that we had to make assumptions about the population a sample resulted
from in order to use the inferential procedures for the population mean. For example, to perform a hypothesis

test on the population mean µ of some characteristic of a population using the test statistic Z =
X̄ − µ
σ/
√
n

, we

had to assume that:

1. The sample in-hand was a random sample from the population of interest.

2. The population standard deviation σ of the characteristic is known.

3. At least one of the two following requirements are met:

(a) The characteristic in the population is normally distributed.

(b) The sample size n is sufficiently large so that the Central Limit Theorem guarentees normality of
Z.

In developing the simple linear regression model in the previous class session, nothing we did required
statistical assumptions about the population. We determined the line of best fit

ŷ = b0 + b1x (1)

as a way to provide the ‘best’ predictions ŷi of the responses yi using the predictors xi in our sample, where
‘best’ here means that we minimized the squared residual between our predictions ŷi = b0 + b1xi and the
actual responses yi. If all we want to do is prediction, and we are satisfied with the performance of the linear
prediction ŷ = b0 + b1x, we can stop there. The regression function ŷ = b0 + b1x tells us how our prediction
of y changes as the predictor x changes, and thus summarizes the data using a line.

Typically, however, we do not just care about how the values of x and y are associated in our sample,
but rather how they are associated in the population from which they were sampled. In that case, we want
to make an inference from the sample to the population, and a statistical model is required. The statistical
model underlying all of the formulas in Chapter 9 of Triola & Triola is the linear regression model with
normal residuals,

Yi = β0 + β1xi + εi. (2)

This model says that the response Yi (now treated as a random variable) is constructed by multiplying the
predictor xi by β1, adding that to β0, and then adding a random residual term εi to β0 + β1xi. Here, β is
the Greek letter ‘beta’ (the analog to the Roman letter b), and ε is the Greek letter ‘epsilon’ (the analog to
the Roman letter e). Thus, the intercept β0 and slope β1 are the population analogs of b0 and b1, and the
residual ε is the population analog of the in-sample residual / error e.
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The simple linear regression model with normal residuals also makes assumptions on the distribution of
ε. It assumes that the εi are all independent normal random variables with mean 0 and standard deviation
σε. Summing up, this means that the assumptions of the full simple linear regression model with normal
residuals are the following:

Assumptions Needed for Inferences Derived from Simple Linear Regression
Model with Normal Residuals:

1. The sample in-hand was a random sample from the population of interest.

2. The response Y can be modeled as a linear function of the predictor x by Yi = β0 + β1xi + εi.

3. The residuals εi are mutually independent. That is, each residual does not depend in any way
on any of the other residuals.

4. The residuals εi have mean 0 and a standard deviation σε, both of which do not depend on xi.

5. At least one of the two following requirements are met:

(a) In the population, the residuals ε are normally distributed.

(b) The sample size n is sufficiently large that the distribution of the residuals washes out in
a Central Limit Theorem-like result.

In the final section of this handout, we will discuss margins of error and hypothesis tests for the population
intercept β0 and slope β1. For these to be valid, we need each of the above assumptions to hold. This means
that before we perform an inference on β0 and β1, we should check that the assumptions hold. One way to
check these assumptions is to use a set of diagnostic plots, which we turn to next.

2 Diagnostic Plots for the Simple Linear Regression Model with
Normal Residuals

To test the assumptions of the Simple Linear Regression Model with Normal Residuals, we would like to
have the population residuals ε = Y − (β0 + β1x), which we could then test for each of the assumptions
above. However, we do not have access to these residuals. Instead, we have access to the in-sample residuals
e = y− (b0 + b1x) from each of our predictions. The in-sample residual e will not quite match ε since we are
using our estimates of the intercept and slope, b0 and b1, in place of the population values of the intercept
and slope, β0 and β1. If we’ve done a good job of estimating β0 and β1, however, then b0 and b1 will be
close to the population values and e ≈ ε. This means that we can use the in-sample residuals to check the
assumptions listed above. If the Simple Linear Regression Model with Normal Residuals is correct, then the
sample residuals should approximately satisfy each of the assumptions in the box above.

When we perform a regression from the Stat > Regression > Regression > Fit Regression Model

... menu item in Minitab, we can tell Minitab to plot a set of diagnostic plots by clicking the Graphs...

button in the dialog box, and selecting the Four in one radio button from the resulting window. Each of
these diagnostic plots checks for one of the assumptions above. One such set of diagnostic plots is shown in
Figure 1 below. I have labeled these plots 1-4, and will take them one-by-one, and explain the assumption
they check.

Plot 1: Normality of the Residuals

The first plot is a plot we have seen before: it is a plot of the observed values of the residuals ei (sorted from
most negative to most positive) against the expected percentiles of those residuals if the residuals followed
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Figure 1: A sample diagnostic plot produced by Minitab when the Simple Linear Regression Model with
Normal Residuals is appropriate. See the “Demo of Diagnostic Plots for Simple Linear Model” on the course
website to generate more plots like these where the model is well-specified and misspecified.
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a normal distribution. This is a probability plot, and if the residuals are approximately normal, then the
points on the probability plot will approximately follow the expected values given by the red line.

Plot 2: Residuals Have Mean 0 and Constant Standard Deviation for Each Value
of x

The second plot tests the assumption that the residual terms have mean 0 and standard deviation σε, neither
of which should depend on x. To check this, we plot each in-sample residual ei against the fitted value of
ŷi. So each point in the second plot corresponds to (ŷi, ei). Since ŷ = b0 + b1x, this is just a rescaling the
predictor x, so it is the same as plotting the residuals against the predictor x. If the assumptions hold, then
this should look like a ‘blob’ without any discernible structure, and the center (mean) of that blob, along the
vertical axis, should be zero for all values of x. Moreover, the vertical spread of the blob should be constant
for each value of x, since the standard deviations of the residual terms are assumed to be fixed at σε.

Plot 3: Normality of the Residuals

The third plot gives us the same information as the first plot: it is the frequency histogram of sample
residuals. Thus, if the assumptions hold, the frequency histogram for the sample residuals should be bell-
shaped, and if we overlay the frequency histogram with the density histogram of the appropriate normal
distribution, they should match up.

Plot 4: Independence of the Residuals

The third assumption, that the residuals are mutually independent, is a very strong condition. One way to
look for obvious deviations from mutual independence is to plot the residuals as a function of their order in
the data set. This is especially useful if the data is ordered in some natural way, such as by time, by space,
or by entrance into a study. This is precisely what the fourth plot shows: each sample residual is plotted
against its order in the sample. If the residuals are mutually independent, then there should not be any
pattern in this plot as a function of the observation index.

Conclusion from Diagnostic Plots in Figure 1

Based on the four plots in Figure 1, we see that all of the assumptions of the simple linear regression model
with normal residuals seem to be satisfied. Plots 1 and 3 show that the sample residuals are approximately
normally distributed. Plot 2 shows that there is no strong pattern in either the mean or the standard
deviation of the sample residuals as a function of the predictor x: the plot is a ‘blob.’ Finally, Plot 4
shows no clear pattern in the sample residuals as a function of their index, so the sample residuals look
approximately independent.

Demo on Course Website

You should experiment with the “Demo of Diagnostic Plots for Simple Linear Model” on the course website
to generate more plots like these where the model is either well-specified and misspecified. Use the drop-down
menu to change the population so that the population’s distribution breaks one or more of the assumptions of
the simple linear regression model with normal residuals. In this case, the simple linear regression model with
normal residuals is ‘misspecified’: it does not match the actual properties of the population, and therefore
inferences using the simple linear regression model with normal residuals will not be valid. For example,
confidence intervals for the population characteristics will not have the desired coverage, and hypothesis tests
will not have the desired Type I error rate. Whenever you find that your data do not match a pre-defined
model, you should be very skeptical of the inferential statistics reported by Minitab.
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3 Inferences from the Simple Linear Model with Normal Residu-
als

All of the inferential statistics (standard errors, T -statistics, P -values, etc.) reported by Minitab after
running a regression rely on the assumptions outlined in the first section of this handout. This is why
you should check these assumptions before proceeding. Otherwise, the numbers mean nothing: garbage in,
garbage out.

Once we have found that the assumptions seem to hold in our data set, we can proceed to perform
inferences from our sample to the population the sample comes from. Remember that, under the simple
linear regression model with normal errors, we assume the response Y can be modeled as

Y = β0 + β1x+ ε. (3)

where β0 is the population intercept and β1 is the population slope. Notice that, if the model is true, then
when β1 = 0, our prediction of the response does not change per unit change in the prediction. Thus, the
response and the predictor are not linearly associated. In fact, when the linear model with normal residuals
is correct, zero linear association implies something much stronger: independence between the predictor and
the response. For this reason, the most common hypothesis test to perform in the setting of a simple linear
regression is:

H0 : β1 = 0

H1 : β1 6= 0

That is, we set up the null hypothesis as the boring case: there is no linear association between the predictor
and the response. The alternative hypothesis is the opposite of this: there is some linear association between
the predictor and the response.

To test this hypothesis, we will play the same hypothesis testing game as usual. We will compare b1,
our sample estimate of β1, to the null value, in this case zero, and see how likely it was to get the observed
value of b1 when the null hypothesis that β0 = 0 is actually true. So we set up a T -statistic under the null
hypothesis that β1 = 0, giving,

T =
b1 − β1
sb1

(4)

=
b1 − 0

sb1
=

b1
sb1

(5)

where sb1 is the standard error (what Triola & Triola call the margin of error) of b1. Minitab reports this
standard error as SE Coef: the standard error of the coefficient. Under the null hypothesis, this T -statistic
is T -distributed with n− 2 degrees of freedom. The P -value reported by Minitab thus uses the T -table with

n− 2 degrees of freedom to determine the probability of observing a value of t at least as extreme as t =
b1
sb1

when the null hypothesis is true. Notice that this is a two-tailed test. We interpret the P -value the usual
way: we reject the null hypothesis at significance level α if the P -value is less than or equal to α.

We can also use the standard error of the coefficient to construct a 1 − α confidence interval for β1,
namely

b1 ± tα/2,n−2sb1

Thus, a rough 95% confidence interval for β1 for large enough n is b1 ± 1.96sb1 ≈ b1 ± 2sb1 .
You can use the same construction to perform a hypothesis test or construct a confidence interval for the

population slope β0. However, this is typically of less interest, so I will not cover it in class or in these notes.
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